
Cache Efficient Bloom Filters for Shared Memory

Machines

Tim Kaler

tfk@mit.edu

MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street

Cambridge, MA 02139

Abstract

Bloom filters are a well known data-structure that supports ap-
proximate set membership queries that report no false negatives. Each
element in the universe represented by the bloom filter is associated
with k random bits in the structure. Traditional bloom filters, there-
fore, require k non-local memory operations to insert an element or
perform a lookups. For very large bloom filters, these k lookups may
require k disk seeks. Lookups can be expensive even for moderately
sized filters which fit into main memory since k non-local memory ac-
cesses may result in L3, L2, and L1 cache misses.

In this paper, we implement a cache-efficient blocked bloom filter
that performs insertions and lookups while only accessing a small block
of memory. We improve upon the implementation described by [4] by
adapting dynamically to unbalanced assignment of elements to memory
blocks. The end result is a bloom filter whose superior cache locality
allows it to outperform a standard bloom filter on a shared memory
machine even when it fits into main memory.

This paper also surveys the design and analysis of three existing
types of bloom filters: a standard bloom filter, a blocked bloom filter,
and a scalable bloom filter. Ideas from these data structures will allow
for the implementation of a cache efficient bloom filter which provides
good memory locality. These data structures are used directly by our
cache efficient bloom filter to obtain its properties.

1 Introduction

Bloom filters are an efficient data structure for performing approximate set
membership queries. A traditional bloom filter maintains an array of m bits



to represent a set of size n. It utilizes k hash functions to map each element in
some universe to k random bits in its array. An element is inserted by setting
its k associated bits to true. A query for approximate set membership
is performed for an element by taking the bitwise AND of its k bits. If
the element was inserted into the bloom filter, a lookup for that element is
guaranteed to be correct. Sometimes, however, an element which is not in
the set will be mapped to k bits which have been set due to the insertion of
other elements. In this case, a false positive is reported for that element.

One problem with traditional bloom filters is that they require k random
IO operations to perform insertions and approximate membership queries. If
a bloom filter is stored on disk, it may be necessary to perform k disk seeks
to access k random bits in the filter’s array. These random IO operations
can also be expensive when the bloom filter fits into main memory.

A modern shared memory machine has a heirarchy of caches. Typically
there are three caches of increasing size: L1, L2, and L3. On the modern
multicore machine used for the experiments in this paper the L1-cache is 32
KB, the L2-cache is 128 KB, and the L3-cache is 12 MB. Each level of the
cache hierarchy is increasingly expensive to access. Even moderately sized
bloom filters may exceed 12 MB in space. Accessing k random bits in a bit
array much larger than 12 MB may result in up to k expensive L3-cache
misses.

This paper explores methods for modifying the standard bloom filter
to improve the memory locality of insertions and approximate membership
queries. Ideally, each element would be mapped to k bits located on the
same cache line (usually 64 bytes) or on the same memory page (usually
4096 bytes). Even coarser memory locality, however, may still help reduce
the number of L3-cache misses and improve performance.

Blocked bloom filters, developed by Putze, Sanders, and Singler, pro-
vide a potential solution to the poor memory locality of standard bloom
filters [4]. A blocked bloom filter is composed of b smaller standard bloom
filters of equal size. Each element is mapped to k bits within a single ran-
domly assigned bloom filter. The problem with this approach, however, is
that the random assignment of inserted elements to blocks will result in some
blocks becoming overloaded. Inserting too many elements into a given block
will increase its false probability rate. To compensate, [4] proposes using
more space by scaling the size of each block by approximately 15 to 30%.

This paper considers the question: can we efficiently resize each of the
b bloom filters dynamically according to its load to save space? The notion
of bloom filters which can resize dynamically has been explored previously.
Scalable bloom filters developed by Baquero, Hutchison, and Preguica

2



maintain a predetermined failure probability even when the number of in-
serted elements is not known in advance [1]. This data structure may be used
to implement a dynamic blocked bloom filter whose composite bloom fil-
ters resize dynamically in response to unequal load. This data structure is
fairly natural since it is merely a composition of existing work. To the best of
the author’s knowledge, however, this data structure has not been analyzed
in previous work.

Four types of bloom filters have been implemented during the course
of this project. The standard bloom filter, the blocked bloom filter, the
dynamic (scalable) bloom filter, and the dynamic blocked bloom filter. The
first contribution of this paper is a survey of the three bloom filter variants
previously described in the literature coupled with some empirical analysis of
their performance when implemented. The second contribution is the design
and empirical analysis of the dynamic blocked bloom filter which will take
advantage of the machinery developed during the course of our survey.

The following is a brief outline of the contents of the paper.

• (Section 2) Design and implementation of the standard bloom filter
data structure which requires only 2 independent hash functions, in-
dependent of k.

• (Section 3) A scalable bloom filter which can resize itself dynamically
at runtime while maintaining the same false positive rate is described
and analyzed. Empirical results provide a direct comparison of the false
positive rate and memory usage of scalable bloom filters and standard
bloom filters. Such a direct comparison appears to have been absent
from the original scalable bloom filter paper.

• (Section 4) A blocked bloom filter which is analyzed and empirically
tested in two cases: the case in which insertions are equally distributed
amongst all blocks, and the case in which insertions are assigned to
blocks according to a random hash function.

• (Section 5) A dynamic blocked bloom filter is described and analyzed.
The false positive rate, runtime, and memory usage is compared with
the standard bloom filter and the blocked bloom filter.

• (Section 6) A brief conclusion which includes a few informal remarks
on some related ideas I found interesting, but did not have time to
explore in this paper.

3



2 Standard Bloom Filters

In this section we review the basic theoretical properties of the standard
bloom filter for approximate membership queries. We then briefly describe
our implementation of the standard bloom filter specifying how to reduce
the cost of computing k hash functions and how to guarantee correctness
when elements are inserted into the bloom filter concurrently.

Formal description and analysis

Let S be a set of elements that is a subset of some universe U . Let XS(n, c, k)
be a standard bloom filter utilizing cn bits to perform approximate mem-
bership queries on a set of size cn. Each element e ∈ U can be mapped
to k random bits of XS using k independent hash functions h1, . . . , hk. To
insert an element e into XS the bits h1(e), . . . , hk(e) are all set to true.
To perform an approximate membership query for the element e the bitwise
AND of its k bits in XS is computed.

The false positive rate for XS , fS , is the probability that XS reports
that an element e /∈ S is a member of the set. The parameter k can be
optimized to minimize the false positive rate as a function of c. After in-
serting n elements, the probability that a given bit is empty is (1− 1/cn)nk.
This can be rewritten as ((1 − 1/cn)cn)k/c ≈ e−k/c. The probability of re-
porting a false positive for an element e /∈ S is equal to the probability of
the k random bits assigned to e being set in XS . This probability is the
product fS ≈ (1 − e−k/c)k. The approximation for fS is minimized when
k = c ln 2 ≈ 0.7c.

We note that for this optimal value of k the probability that any given
bit will be true is (1 − e−k/c) ≈ 1/2 once all elements have been inserted.
Therefore, for the optimal values of k and c the false positive rate for XS

will be fS ≈ 1/2k.

Hash functions

The primary implementation concern with the standard bloom filter is the
choice of hash functions. If the k bit indicies for a given element h1(e), . . . , hk(e)
are expensive to compute then they may dominate the cost of insertions and
lookups. The hash functions must have certain properties, however, or else
the false positive rate may increase unacceptably. For example, if the k hash
functions are only pairwise independent then it has been shown that the false
positive rate can increase by a constant factor [3].

It turns out, however, that it is possible to use 2 independent hash func-
tions to simulate h1, . . . , hk while maintaining the same asymptotic false pos-

4



itive rate as when the k hash functions are independent. This result is pre-
sented by Adam Kirch, and Michael Mitzenmachert in the paper “Less Hash-
ing, Same Performance: Building a Better Bloom Filter” [3]. Their scheme
utilizes two hash functions H1, H2, and uses the formula hi = H1 + iH2.

Using this technique reduces the problem of computing k random bit
indices to that of computing 2 independent hash functions. Our implemen-
tation computes the two necessary hash functions H1, H2 using the Mur-
murHash [2] function which provides good performance in practice. We seed
each of the two hash functions by utilizing the C library’s standard random
number generator seeded with the current time.

Concurrent access

This paper will not focus on the concurrent performance of bloom filter vari-
ants. It is worth noting, however, that concurrent insertions may introduce
the possibility of false negatives in bloom filters. The complexity in imple-
menting a standard bloom filter allowing concurrent inserts arises because
most architectures do not support atomic writes to a single bit. Commonly,
hardware only guarantees that reads and writes to whole bytes will appear
atomic. As elements are being inserted into the bloom filter, multiple ele-
ments may attempt to set a bit in the same byte. Suppose two processors
attempt to set two different bits to 1 in the same byte b. Each processor
will read the byte b into memory, set the appropriate bit, and then store its
modified copy of b. If both processors read the byte b before either modifies
it, then the first write will be overridden by the second.

In practice, this causes the standard bloom filter to have a non-zero
false negative probability! For example XS(n = 227, c = 20, k = 14) re-
ports a number of false negatives commonly ranging from 0 to 20 when
run on 12 cores. This false negative rate is very small, but it compromises
one of the guarantees provided by standard bloom filters. In our imple-
mentation, we resolve this race by utilizing the atomic builtin instruction
__sync_fetch_and_or. It turns out that the use of this atomic instruction
does not have a big impact on performance. On simple benchmark with
on XS with 50% of all lookups outside the set S, the nonatomic multicore
version runs in ≈ 21.5 seconds, and the atomic multicore versions in ≈ 21.8
seconds.

3 Scalable Bloom Filters

A scalable bloom filter [1] is a bloom filter that can resize itself dynamically
while maintaining an upper bound on its false positive rate. We first present

5



the design and analysis of a scalable bloom filter and then provide empirical
results using our implementation to demonstrate its false positive rate and
space usage.

Design and Analysis

A scalable bloom filter (or dynamic bloom filter) XD is implemented as a
chain of standard bloom filters XS,1, . . . XS,t whose false positive probabili-
ties decrease geometrically according to a tightening ratio r. If the false
positive probability of XS,1 is p, then the false positive probability of the ith

filter in the chain is ri−1p.
Elements inserted into XD are added to the last filter in the chain, XS,t.

When XS,t is unable to insert additional elements without sacrificing its false
positive probability a new standard bloom filter XS,t+1 is added to the chain.
The capacity for newly added bloom filters can be chosen independently of
its false positive probability. It is common, however, for the sizes of each
filter in the chain to grow exponentially to allow the scalable filter to grow
arbitrarily large while guaranteeing a logarithmic chain length.

To perform an approximate membership query on XD a query is per-
formed on each filter in the chain XS,1, . . . XS,t. The query reports that the
element is in the set if any filter in the chain reports that it contains the
element and returns false otherwise. The probability of a false positive,
therefore, is bounded from above by the probability that any filter in the
chain reports a false positive.

Pr(False positive in XD) <
t∑

i=1

ri−1p

<
1

1− r
p

Tightening false positive rate

In order to tighten the false positive rate, we recall that a standard bloom
filter XS(n, c, k) has a minimal false positive rate when c = k/ ln 2 that is
equal to (1−e−k/c)k = (1/2)k. If the standard bloom filter has a false positive
rate of p = (1/2)k, then a new standard bloom filter XS(n

′, c′, k′) with a
false positive rate of p′ = rp can be obtained by setting k′ = k + lg(1/r),
and c′ = k ln 2. Then p′ = (1/2)k+lg(1/r) = rp. For our implementations we
choose r = 1/2 so that k′ = k+1, and c′ = c+ln 2. We utilize floating point
representations of k and c to reduce the impact of rounding errors.

6



Figure 1: Plot of the memory
use (in MB) for scalable and stan-
dard bloom filters as a function
of the number of hash functions
utilized. Results for the scalable
bloom filter are shown for two ini-
tial set sizes: 512 elements and
2048 elements.

Figure 2: Plot of the false pos-
itive rate for scalable and stan-
dard bloom filters as a function of
the number of hash functions uti-
lized. The x-axis is on a log (base
2) scale. Results for the scalable
bloom filter are shown for two ini-
tial set sizes: 512 elements and
2048 elements.

Initializing a scalable bloom filter

Suppose that we wish to initialize a scalable bloom filter that maintains the
same false positive probability of a standard bloom filter that knows its size
in advance: XS(n, c, k). Suppose that the false positive probability of XS

is q. The bound on the scalable bloom filter’s false positive rate shows that
to guarantee a false positive rate of q the false positive probability of the
first bloom filter in the chain must be p = (1 − r)q. As we saw when we
tightened the false probability rate of each filter in the chain, this requires
us to increase k by lg(1/(1 − r)) and the number of bits per element by
lg(1/(1− r))/0.7. For example, if r = 1/2 this, then we increase k by 2 and
the number of bits per element by 2/0.7 ≈ 2.85. The first bloom filter in
the chain, therefore, will be XS,1(n

′, c + 2.85, k + 2) where n′ is an initial
estimate of the size of the set.

7



Implementation, and empirical results

I ran an experiment to compare the false positive rate and memory usage
of the standard and scalable bloom filters. A total of n = 225 random
elements (pseudorandom integers) were inserted into each bloom filter. Then
2n lookups were performed n of which were guaranteed to have been inserted
into the set. An exact set data structure containing all inserted elements was
used to compute the exact number of false positives. The standard bloom
filter was initialized assuming a set of size n, but the scalable bloom filters
used smaller intial set sizes of 512 and 2048. The tightening ratio for the
scalable bloom filters was chosen to be r = 1/2 and the capacity of XS,i+1

was set to be double the capacity of XS,i, bounding the length of the chain
by lgn.

The result of the experiment measuring memory usage is displayed in
Figure 1. Note that the initial size of the bloom filter can have a big impact
on memory usage. The scalable bloom filter intially sized to contain 512
elements uses roughly double the space of the scalable bloom filter initially
sized to contain 2048 elements. The reason for this increased space usage is
that each bloom filter in the chain requires additional bits for each inserted
element to guarantee a tightened false positive rate.

An additional phenomenon we note is that the initial size of the scalable
bloom filter appears to have an impact on its false positive rates in practice.
A comparison of the scalable bloom filters initialized with 512 and 2048
elements with the standard bloom filter in Figure 2 reveals that the filter
with initial capacity of 2048 elements matches the false positive rate of the
standard bloom fitler for larger values of k. The false positive rate of the filter
with initial capacity 512 grows larger than that of the standard bloom filter
when more than 12 hash functions are used. The filter with initial capacity
2048, however, has a false positive rate that is lower than the standard bloom
filter until 15 hash functions are used. It is, of course, expected that the
inital capacity would have some effect on the false positive rate because the
false positive rate of a scalable bloom filter experiencing t resize operations
will be the sum of t terms in a geometric series converging to its desired
probability. The magnitude of the effect, however, is somewhat surprising.
The original work on scalable bloom filters in [1] did not provide a direct
empirical comparison of the false positive rates of scalable and standard
bloom filters. For this reason, it is unclear whether this phenomenon is due
to a subtle implementation bug (perhaps a rounding error) or has some other
cause (perhaps related to the imprecision of various approximations).

8



4 Blocked Bloom Filters

In this section we describe the blocked bloom filter as described in [4] and
analyze its real world performance when its blocks are evenly and unevenly
loaded.

Design and analysis

Suppose we have a blocked bloom filter XB(n, c, k, b) where b is the number
of blocks. Let n be the total number of elements inserted into XB. As with
the standard bloom filter, we will store c bits for each element n. Each block
is a standard bloom filter of capacity n/b containing cn/b bits. To perform
insertions and lookups a hash function s : U → {1, . . . , b} is used to assign
elements from the universe U to one of b bloom filter blocks. The insertion or
lookup for that element is then performed on its assigned bloom filter. Our
implementation utilizes the MurmurHash function (with a distinct seed) to
perform this sharding.

We now will estimate the false probability rate of this blocked bloom
filter. After all elements have been inserted the false positive probability of
each bloom filter block will be fixed. Let fBi

be the false positive rate of
the ith bloom filter block. Consider an element e which was not inserted
into XB. To lookup e we map e to one of b bloom filter blocks, Bi. We
then perform a regular bloom filter lookup for e in block Bi. The false
positive probability for the ith bloom filter is fBi

. Therefore, we have that
Pr(false positive on e|e → Bi) = fBi

. Using the chain rule of probability we
can compute the probability of a false positive when looking up e in XB.

Pr(false positive on e) =
b∑

i=1

fBi

b

Perfectly balanced case

The false positive rate of a blocked bloom filter depends on the distribution of
inserted elements among its b blocks. In general, the more unevenly elements
are distributed among its blocks the larger the false positive probability.
The best case performance of the blocked bloom filter, therefore, can be
ascertained by testing its performance on an insertion set which shards evenly
into its b blocks.

In this ideal case, we can analyze the theoretical false positive rate of
the blocked bloom filter. Each block is a standard bloom filter with cn/b
bits. By assumption, each block has received n/b insertions. Therefore, the

9



Bloom Filter Cache References Runtime False Positive Rate

1. Standard BF 45.257 M/sec 172.53s 0.014%
2. Blocked BF Balanced 30.250 M/sec 154.97s 0.013%
3. Blocked BF Unbalanced 32.695 M/sec 163.81s 0.021%

Figure 3: Comparison of the cache performance and runtime of the several variants of the
standard bloom filter and the blocked bloom filter under different sharding distributions.
The cache misses statistic was gathered using the perf stat command. These experiments
were run using parameters n = 227 elements, c = 20, k = 13. n insertions were performed
followed by 2n lookups (half of which were contained in the set).

false positive probability for any block i is fBi
= (1 − e−k/c)k. Since we

know the false positive rate of each of the b bloom filters we can compute
the probability of reporting a false positive for an element for an element
e /∈ S.

Pr(false positive on e) =
b∑

i=1

fBi

b

= (1− e−k/c)k

Indeed, we observe that in practice blocked bloom filters have false pos-
itive probabilities that are asymptotically the same as the standard bloom
filter with the same parameters c, k when their blocks are balanced.

Empirical evaluation

I performed an experiment to measure the relative cache efficiency of the
standard bloom filter and the blocked bloom filter under balanced and un-
balanced distributions of insertions to blocks. The blocked bloom filters store
a fixed number of elements in each block. Each block contains 2944 elements
using approximately 6835 bytes of space. The runtime, total number of cache
references, and false positive rates are reported in Figure 3.

The total number of cache references for the blocked bloom filter is ap-
proximately 30% lower than for the standard bloom filter under both bal-
anced and unbalanced insertion distributions. This translates into a roughly
10% improvement in overall runtime. The false positive rate for the unbal-
anced blocked bloom filter, however, is larger than the false positive rate for
the standard bloom filter by a factor of 1.5. The blocked bloom filter with
balanced insertions, however, has a false positive rate that is actually slightly
lower than that of the standard bloom filter.

10



Unbalanced case

The unbalanced assignment of inserted elements to bloom filter blocks has an
impact on the false positive rate for blocked bloom filters as seen in Figure 3.
If each inserted elements is assigned a random block then we expect the
sizes of the blocks to follow a binomial distribution. Experimentally, when
inserting 225 elemenst into 655360 bins the average is 51 element, but the
minimum is 20 and the maximum is 90.

The remainder of this paper will discuss how “scalable bloom filters” can
be used to allow each bloom filter block in XB to grow dynamically when it
is overloaded.

5 Dynamic Blocked Bloom Filter

The blocked bloom filter previously described was composed of b standard
bloom filters whose sizes were determined statically based on their expected
sizes. The dynamic blocked bloom filter is a blocked bloom filter in which
the size of each block is grows dynamically as the number of elements inserted
increases. This allows the dynamic blocked bloom filter to maintain a low
failure probability without needing to scale the size of every block by a fixed
percentage. In practice, the failure probabilities provided by the dynamic
blocked bloom filter match those of the standard bloom filter fairly closely
for values of k between 5 and 15.

Design and analysis

The dynamic blocked bloom filter is composed of b blocks. Each block is a
scalable bloom filter with initial capacity n/b. The tightening ratio used for
the scalable bloom filters was chosen to be r = 1/2 for simplicity. Based
on the analysis in Section 3 we match the false positive rate of a standard
bloom filter with parameters c, k by configuring each scalable bloom filter to
initially use k′ = k + 2 hash functions and c′ = c+ 2/0.7 bits per elements.
As seen in Figure 4 this additional space requirement has an impact on the
space efficiency of dynamic blocked bloom filters for small values of k. For
k > 8, however, the total space used (including dynamic resizing) is less than
20% of the space used by a standard bloom filter.

When a scalable bloom filter reaches its capacity it resizes itself by adding
an additional bloom filter to its chain with a tighter false probability rate. In
Section 3 we increased the size of each filter in the chain exponentially so that
the length of the chain would be logarithmic in the number of inserted ele-
ments. Exponential growth is not required to guarantee a logarithmic chain

11



Figure 4: Plot of the relative space usage of the dynamic blocked bloom filter
in comparison to the standard bloom filter as a function of the number of hash
functions used. A point (x, y) on the plot is implies that for k = x, the dynamic
blocked bloom filter uses y times as much space as the standard bloom filter.

length for scalable bloom filter blocks, however, because with high probabil-
ity no scalable bloom filter block will grow to be larger than Θ(n log(n)/b).
To reduce space usage, scalable bloom filter blocks grow by a fixed amount
defined to be a fraction of their initial capacity.

Performance results

I ran experiments to compare the runtime and false positive rate of the
dynamic blocked bloom filter against the blocked and standard bloom filters.

Figure 5 contains two plots of the relative speedup achieved over the
standard bloom filter by the blocked and dynamic blocked bloom filters.
When the bloom filter size is smaller than 8 MB the blocked bloom filters
are slower than the standard bloom filter. The relative performance between
the standard and blocked bloom filters is nearly constant when the bloom
filter size is less than 8 MB. However, as the bloom filter size grows to be
approximately 16-32 MB the performance gap between the standard and
blocked bloom filters closes rapidly. After the bloom filter exceeds 32MB in
size the blocked bloom filters perform better than the standard bloom filter.

Why does the relative performance change so rapidly as the set size enters
the 16-32MB range? A likely explanation is that it is within this range that
the standard bloom filter begins to incur expensive L3 cache misses that the
more cache efficient blocked filters avoid. The L3 cache on the experimental

12



Figure 5: Two plots showing the
speedup achieved by the static
and dynamic blocked bloom fil-
ter when compared to the stan-
dard bloom filter. The x-axis of
the first plot shows the number
of elements inserted. The x-axis
of the second plot shows the to-
tal space in MB used by the fil-
ter. The benchmark was run us-
ing k = 15 hash functions. These
benchmarks were run on a sin-
gle core of a multicore machine.
The machine used was an Intel
Xeon X5650 with 49GB DRAM,
two 12-MB L3-caches each shared
between 6 cores, and private L2-
and L1-caches with 128 KB and
32 KB, respectively. Since the
benchmark was run on a single
core the program had access to
4 GB of DRAM, a single 12-MB
L3-cache, a 128 KB L2-cache,
and a 32 KB L1-cache.

machine is approximately 12 MB which is quite close to the point at which
the relative performance between the standard and blocked filters begins to
change.

Figure 6 demonstrates that the dynamic blocked bloom filter has a lower
false positive rate than the static blocked bloom filter and can match the
false positive rate of the standard bloom filter for values of k between 5 and
15.

6 Conclusion

This paper has surveyed and implemented three known bloom filter variants:
the standard bloom filter, the scalable bloom filter, and the blocked bloom
filter. In addition, we presented a fourth bloom filter called the dynamic
blocked bloom filter which utilizes ideas from blocked and scalable bloom
filters to obtain a cache efficient bloom filter which maintains tighter failure
probabilities. Improving cache locality appears to be worthwhile for bloom

13



Figure 6: Plot of the false positive rate of the dynamic blocked bloom filter, the
blocked bloom filter and the standard bloom filter as a function of the number of
hash functions used. The x-axis is on a log (base 2) scale. The false positive rate
was calculated by inserting 224 random elements into each set and then performing
225 lookups. Half of the lookups were guaranteed to be positive. False positives
were detected using an exact set data structure containing all inserted elements.

filters even when they fit into main memory. Performance improvements were
observed for cache efficient bloom filter variants when filters were larger than
the experimental machine’s L3 cache. The source code for this project is on
bitbucket (https://bitbucket.org/tfk/bloom-project).

Future exploration

The following are extensions and ideas, described informally, which did not
make their way into this paper. It may be interesting the explore these ideas
more fully in future work.

Overflow table An alternative approach to dynamically resizing the bloom
filter blocks is to use an additional bloom filter to contain all elements which
have “overflowed.” If an inserted element cannot be added to a bloom filter
block without causing that block to exceed its capacity, then it is inserted
into the overflow bloom filter. This method can be applied recursively so
that the overflow bloom filter could be, itself, a cache efficient bloom fil-
ter that handles overflow. Not all lookups would be required to query the
overflow filter: only those which queried a block that was at capacity. Still,
since some lookups may need to query the overflow table it is necessary to

14



tighten the false probability rate: requiring more bits per inserted element.
Fortunately, however, the size of the overflow table need only be a fraction of
the size of the original table since most inserted elements will not overflow.

External memory setting The performance benefits of using blocked
bloom filters are magnified in the external memory setting where the cost
of a random IO is quite large. It may be interesting to investigate ways
to improve the performance of blocked bloom filters in the external memory
setting. For example, for dynamic blocked bloom filters it is likely worthwhile
to ensure that each dynamic block is contained in a contiguous portion of
the disk. This could be accomplished by copying the entire dynamic block
to a new portion fo the disk whenever it grows.

References

[1] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison. Scalable
bloom filters. Inf. Process. Lett., 101(6):255–261, Mar. 2007.

[2] A. Appleby. Murmurhash2, 2011.

[3] A. Kirsch and M. Mitzenmacher. Less hashing, same performance: Build-
ing a better bloom filter. Random Struct. Algorithms, 33(2):187–218,
Sept. 2008.

[4] F. Putze, P. Sanders, and J. Singler. Cache-, hash-, and space-efficient
bloom filters. J. Exp. Algorithmics, 14:4:4.4–4:4.18, Jan. 2010.

15


